

Spec Guide

ZipWave | Ceiling Cove | 707

Ceiling cove lighting system for ceiling wash applications.

ZipWave: indirect cove light.

Benefits & Features

Perfect Light Distribution

Optimized distribution, no tuning necessary. Designed for Armstrong® AXIOM® Indirect Light Coves and site-built coves.

Superior Light Quality with High Efficiency

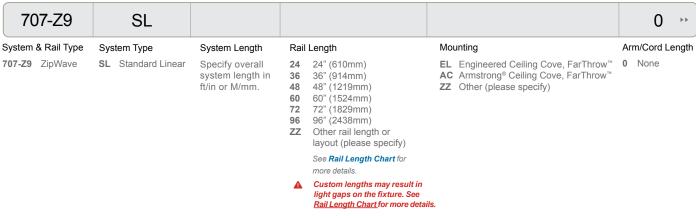
Output up to 1516 lm/ft (4975 lm/m) (HO), 121 lm/W (SO). 90 CRI & tunable white (2200K-6500K) available.

Easy Installation, Minimal Electrical Circuits

Simply drops into cove, no tools required. Plug & play integral power and control circuits provided. Up to 533' can be powered with one 277v feed.

Better Beam Performance

FarThrow[™] lens for long, even beam across the ceiling.


Quick Connect Cables.

Ceiling Cove installed in AXIOM Knife-Edge cove.

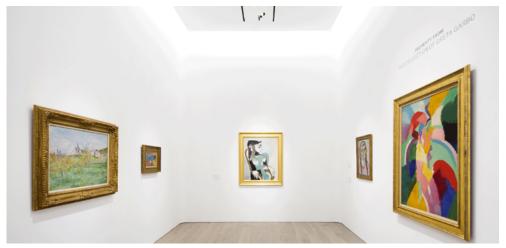
ZipWave | Ceiling Cove | 707 Spec Guide

Build Your Specification

→ IP				Z »	
Power Location	Power Type	Voltage	Emergency Power	LED Type	
IP Integral Power	Integral Power AE 0-10V, 1.0% Dimming AT 0-10V, 0.1% Dimming AD DALI, 0.1% Dimming AX DMX, 100-0% Dimming AH Hi-lume 1% EcoSystem, Soft On / Fade to Black Technology, LDE¹ AH2 ELV 1% 2-wire (Forward and Reverse Phase)	1 120V 2 120V - 277V X Not Yet Specified	No Emergency Power Emergency Power (specify requirements)	Z Zipper Board	
	ZZ Other (please specify)				
	See Power Guide for driver features & limitations.				

>>		C1		AL	
Lumen Output	Color Temperature	Optics	Sensors	Finish	Options
LO Low Output SO Standard Output HO High Output ZZ Other (please specify) See IES Files page for details.	90+ CRI 27 2700K 30 3000K 35 3500K 40 4000K	C1 Clear with EdgeSoft™	O None ZZ Sensor (specify requirements)	AL Clear Anodized	0 None
See Power Guide for driver features & limitations.	ZZ Tunable White Available See Guide for details				

Jumper Cables Sold Separately:


Vode offers a 2' (Part Number: PWH-707-Z9-24-MF-WJ) or 6' (Part Number: PWH-707-Z9-72-MF-WJ) jumper for corner installations. Please indicate on your order the type and quantity required.

Standard 5 Year Limited Warranty. See details **here**. Contact factory for options on Limited Warranties up to 20 years.

Listed to UL standards for damp location by a Nationally Recognized Testing Laboratory (NRTL) recognized by OSHA. Certain limitations exist for each Certification. Contact factory for verification

General Interior and Open Office

Christie's Auction House, Los Angeles, CA

UAMS's Winthrop P. Rockefeller Cancer Institute, Little Rock, AR

All Vode Lighting linear light fixtures proudly carry the Red List Approved designation.

See International Living Future Institute website for details.

Vode Adaptive Architectural Lighting Systems Vode Lighting LLC

Final Assembly: Sonoma, California, US Life Expectancy: 10+ Year(s) End of Life Options: Recyclable (100%)

Ingredients:

Anodized Aluminum (6063-T5 Alloy); Steel; Small Electrical Component (RoHS)¹; Copper; Fluorinated Ethylene Propylene (masterbatch)²; Polymethyl methacrylate (PMMA); Stainless Steel; Polyoxymethylene Copolymer (POM); Styrene-butadiene polymer, hydrogenated; Poly(methyl methacrylate/butyl acrylate/styrene) (PMMA/BA/S); Styrene/butadiene copolymer; Distillates; Polypropylene; Calcium carbonate; Polycarbonate; EVA Copolymer; Methyl methacrylate (MMA); Polyphenylene Oxide; Brass; Tin, Organic

¹LBC Temp Exception RL-002 - Small Electrical Components ²LBC Temp Exception RL-023 - Wire Sheathing Subject to NFPA 90A, NFPA 262, UL* 910

Living Building Challenge Criteria: Compliant

I-13 Red List:

- ☐ LBC Red List Free
 LBC Red List Approved
- % Disclosed: 100% at 100ppm VOC Content: Not Applicable
- Declared

I-10 Interior Performance: Not Applicable I-14 Responsible Sourcing: Not Applicable

VDE-0001 EXP. 01 JAN 2025 Original Issue Date: 2018

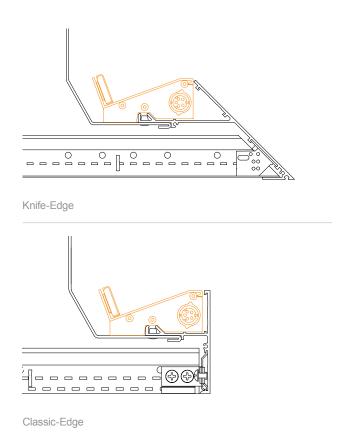
MANUFACTURER RESPONSIBLE FOR LABEL ACCURACY INTERNATIONAL LIVING FUTURE INSTITUTE™ living-future.org/declare

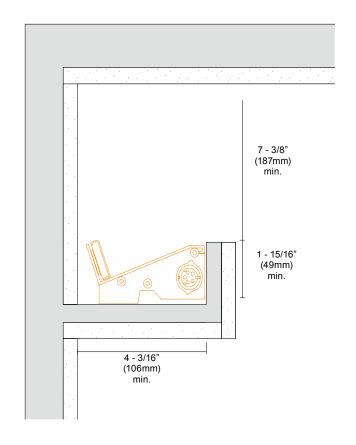
Applications

Vode supplies ZipWave cove product only. Armstrong cove products supplied by Armstrong.

ZipWave FarThrow[™] Ceiling Cove

The Armstrong® AXIOM® Ceiling-to-Ceiling Indirect Light Cove comes in different heights relative to the ceiling plane. The beam distance (the distance at which the soft edge of light crosses the ceiling plane) depends on the height of the ceiling cove.




Armstrong AXIOM Indirect Light Cove, Ceiling-to-Ceiling

An architectural key way in Armstrong AXIOM Indirect Light Coves and Field Coves aligns ZipWave fixtures within the cove to provide consistent, optimized light for every installation.

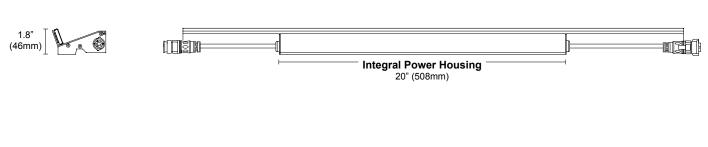

Engineered or Site-built Ceiling Cove

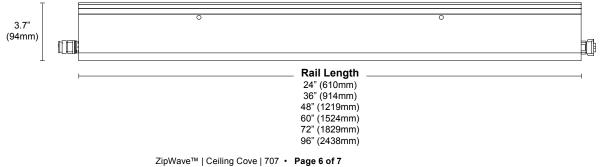
ZipWave can be placed in a wide variety of engineered commercial lighting coves and site-built coves. Use the following minimum dimensions to ensure optimal performance.

Corner Layout

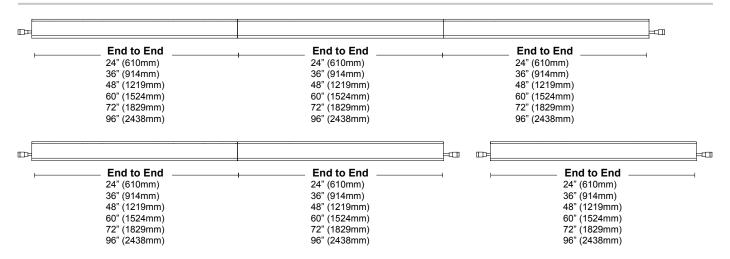
Jumper Cables Sold Separately:

Vode offers a 2' (Part Number: PWH-707-Z9-24-MF-WJ) or 6' (Part Number: PWH-707-Z9-72-MF-WJ) jumper for corner installations. Please indicate on your order the type and quantity required.


Structure


24" (610mm) - 96" (2438mm). Modified lengths available. See <i>Rail Length Chart</i> for more details.
1.8" (46mm) x 3.7" (94mm) x length.
Extruded and machined 6063 aluminum.
Integral power housing compatible with Armstrong AXIOM Indirect Light Coves, pre-fab and site-built coves.
24" (610mm) minimum. Unlimited maximum.
32°F to 104°F (0°C to 40°C).
0-95%, non-condensing.
1.1 lbs per ft (0.50kg per 305mm). Weight will vary slightly due to driver selection.

Materials


LED Board Construction	Aluminum core PCB, black LCP connectors, RoHS compliant.			
Lens	High-impact extruded acrylic glass (PMMA).			
Cable	Ø8mm, 6 wire, UL21388, Mylar White with UV resistant PVC jacket.			

Dimensions

Layout

System Length per Power Feed

24" - 72" Rail Lengths

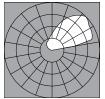
Input	Output					
Voltage	LO	so	НО			
120	267' (81m)	134' (40m)	67' (20m)			
277	615' (187m)	308' (93m)	154' (46m)			

96" Rail Lengths (any system that contains at least one 96" rail)

Input Voltage	Output						
	LO	so	НО				
120	209' (63m)	107' (32m)	54' (16m)				
277	481' (146m)	247' (75m)	124' (37m)				

Quick Connect Cables

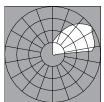
Power and Controls


Power Type	Class 2 (<60V output) constant current driver.
Controls	Dimming (0.1%, 1%), 0-10V, DALI, DMX, Hi-lume 1% are available. See Power Guide for details.
Input Voltage	120V - 277V, 50/60hz.
Power Location	Integral power only. Power cable is 27" (686mm) with 7.875" (200mm) male-male jumper.

Performance | Zipper Board Optics

Zipper Board Optics design has 72 diodes per foot (305mm).

Clear with EdgeSoft (C1), fixture only



L80 >60,000 hours

200 · 00,000 Hours								
		80 CRI (8	0min., 84 av	g.)	90 CRI (90min., 96 avg.)			
Low Output (LO)	2700K	3000K	3500K	4000K	2700K	3000K	3500K	4000K
Efficacy - Lumens per Watt	110	114	116	116	95	98	100	101
Lumens per foot (305mm)	409	422	431	431	353	364	371	375
Watts per foot (305mm)	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8
Standard Output (SO)								
Efficacy - Lumens per Watt	125	128	131	131	107	111	113	114
Lumens per foot (305mm)	818	844	861	861	705	728	742	750
Watts per foot (305mm)	6.6	6.6	6.6	6.6	6.7	6.7	6.7	6.7
High Output (HO)								
Efficacy - Lumens per Watt	116	120	122	122	100	103	106	107
Lumens per foot (305mm)	1555	1604	1636	1636	1340	1383	1411	1425
Watts per foot (305mm)	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5

Clear with EdgeSoft (C1), in cove1

L80 >60,000 hours

	80 CRI (8	0min., 84 av	g.)		90 CRI (9	0min., 96 av	g.)
2700K	3000K	3500K	4000K	2700K	3000K	3500K	4000K
107	111	113	113	93	96	98	102
398	411	419	419	343	354	361	365
3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8
121	125	128	128	104	108	110	114
796	821	838	838	686	708	722	730
6.6	6.6	6.6	6.6	6.7	6.7	6.7	6.7
113	117	119	119	98	101	103	107
1513	1560	1592	1592	1304	1345	1373	1386
13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5
	107 398 3.8 121 796 6.6	2700K 3000K 107 111 398 411 3.8 3.8 121 125 796 821 6.6 6.6 113 117 1513 1560	2700K 3000K 3500K 107 111 113 398 411 419 3.8 3.8 3.8 121 125 128 796 821 838 6.6 6.6 6.6 113 117 119 1513 1560 1592	107 111 113 113 398 411 419 419 3.8 3.8 3.8 3.8 121 125 128 128 796 821 838 838 6.6 6.6 6.6 6.6 113 117 119 119 1513 1560 1592 1592	2700K 3000K 3500K 4000K 2700K 107 111 113 113 93 398 411 419 419 343 3.8 3.8 3.8 3.8 3.8 121 125 128 128 104 796 821 838 838 686 6.6 6.6 6.6 6.7 113 117 119 119 98 1513 1560 1592 1592 1304	2700K 3000K 3500K 4000K 2700K 3000K 107 111 113 113 93 96 398 411 419 419 343 354 3.8 3.8 3.8 3.8 3.8 121 125 128 128 104 108 796 821 838 838 686 708 6.6 6.6 6.6 6.7 6.7 113 117 119 119 98 101 1513 1560 1592 1592 1304 1345	2700K 3000K 3500K 4000K 2700K 3000K 3500K 107 111 113 113 93 96 98 398 411 419 419 343 354 361 3.8 3.8 3.8 3.8 3.8 3.8 121 125 128 128 104 108 110 796 821 838 838 686 708 722 6.6 6.6 6.6 6.7 6.7 6.7 113 117 119 119 98 101 103 1513 1560 1592 1592 1304 1345 1373

NOTES & LIMITATIONS

¹Based on testing 4' rail section placed inside 4' cove section of an Armstrong AXIOM Indirect Light Cove, classic profile. Lumen measurement complies with IES-LM-79-08 testing procedures.

Copyright © 2025 Vode Lighting LLC. All rights reserved. Vode, the Vode logo, BoxRail, FlyWing, MicroBaffle, Button Board, Zipper Board, Zero Canopy, Zero Block, VodeNODE and other names are either registered trademarks or trademarks of Vode Lighting LLC in the United States and may be registered in other countries. All other trademarks listed herein belong to their respective owners. Due to ongoing innovation, specification details may change without notice.